Science, Fiction, Life

Category: Astronomy

The Most Important Thing in the Universe

One of the side effects of studying science is an appreciation for how insignificant humans are in the scheme of things. It is pounded into your head at every opportunity. We are microscopic compared to the Earth, and Earth is not the center of the solar system. Our solar system is one of billions in our galaxy. Our galaxy is to the universe as grains of sand are to the beach. The universe is unfathomably old, and the Earth has been around for a good chunk of that time but humanity is brand new. In Sagan’s famous cosmic calendar analogy, in which the age of the universe is compressed down to a single year, humans don’t appear until minutes before midnight on December 31. On the scale of the universe in both space and time, humans might as well not exist. 

Apart from a thin film of life at the very surface of the Earth, an occasional intrepid spacecraft, and some radio static, our impact on the Universe is nil. It knows nothing of us.

Carl Sagan

This is all true, and it’s important to teach people, especially people who plan to make it their business to study the universe. You need to face reality even when it makes you uncomfortable.

However, it’s a little alarming how gleefully some people like to drive this point home. There’s a sense of smug superiority, a feeling of being somehow above the petty things that concern “ordinary” people. I find this is especially true of certain fields (you get this much more from the physical sciences than biological and social sciences) and certain types of people (especially those who think they have something to prove). 

As I have gotten older, I’ve started to realize that despite good intentions, this “minimize humanity” mindset leads to its own flavor of wrong-headed thinking. People begin to mistake feeling smart for being wise. 

The test of a first-rate intelligence is the ability to hold two opposed ideas in the mind at the same time, and still retain the ability to function. 

F. Scott Fitzgerald

This is one of those cases that Fitzgerald is talking about. Humans are indeed insignificant in both space and time when compared to the universe. But at the same time, we are far more important to each other than the distant reaches of space and time. Both of these things can be true. “Meaning” or “significance” are not laws of physics, they are human constructs. We as humans get to decide what is significant, and the scale of the universe is not the appropriate comparison. Our lives occur on the time scale of decades, and on the spatial scale of a tiny fraction of the surface of the Earth. So what if that’s small compared to the universe? It’s big for us.

Minimizing humanity might help avoid mistakes like saying that the sun goes around the Earth, or that we are at the center of the universe since most galaxies are flying away from ours. But it can also lead to dangerous reasoning like: If humans are insignificant, then how can we be responsible for climate change? Even if you accept that there are enough of us that collectively our actions are significant enough to mess up the planet, it can lead to a nihilistic view that it doesn’t matter. After all, we’re just a flash in the pan. Earth will survive whatever we do. Some species might go extinct with us, but others will adapt and flourish. So who cares? The sun will eventually become a red giant and consume the Earth, and the universe will eventually succumb to entropy. On the scale of the universe nothing matters, everything is insignificant and transient. So if nothing matters why should I care about anyone other than myself and my immediate gratification? A brief bit of hedonism before I return to the nothingness from whence I came. 

Of course, that’s a cop out. An avoidance of the uncomfortable responsibility of deciding for ourselves what is meaningful. It’s easier to throw our hands up and say “well, nothing matters.”

LIfe has no meaning a priori. Before you come alive, life is nothing; it’s up to you to give it a meaning, and value is nothing else but the meaning you give.

Jean-Paul Sartre

Man is condemned to be free; because once thrown into the world, he is responsible for everything he does.

Jean-Paul Sartre

This minimization of Earth and of humanity also can trick otherwise smart people into fixating on the wonders of the universe and neglecting the wonders around them. I have been somewhat guilty of this. I was fascinated by science from an early age, and started studying space right when I got to college. I thought I had a pretty good understanding and appreciation for “mundane” stuff and was more interested in the exciting weirdness of the rest of the universe. But of course, I knew almost nothing about life, and now as I get older and have more life experience, I have come full circle: I feel less drawn than I used to be to the mysteries of space which have no bearing on human life, and am more interested in the richness of regular everyday life.

My point is not that we should not marvel at the universe, my point is that, in looking up at the stars we must try not to devalue the wonders that are right in front of us.  The things that matter and can bring us real happiness are right here on Earth. 

Think of your own life. All the memories and experiences that are stored in your brain. All the relationships, all the places you’ve been, all the things you’ve done. Think of your proudest moments, your greatest disappointments, your loves and your losses. Think of the things you have created, the mark you have made on the world, whatever forms that takes. Just take a moment to recognize the richness of your life and everything you know and have done. These things don’t lose their significance because the universe is vast and ancient. The universe doesn’t get to decide what is significant to you. You do. 

Now consider: there are 7.9 billion other people on this planet. If you looked at one face every second it would take 250 years to look at everyone (and in that time, billions more would be born). Every two years, humanity’s collective experience spans more time than the age of the universe. That’s a lot of people. And what really boggles the mind is that every single one of them has just as rich and vivid and intricate a life as yours. Every one of them has their own favorite places and favorite foods, their own family, their own memories. Every person has things they have created, songs they have sung, dreams they have pursued. Every person has their own story. 

Every place and every thing in the world plays a role in countless people’s stories, and has a story of its own. That big tree in the park is just a tree to you, but to someone it’s where they shared a sunny afternoon with their first love. To someone else it is where they were sitting when the doctor called with bad news. To someone else, it’s where they take their family photo every year.

I think about this a lot when traveling or looking at a map: every place that you see is someone’s home. Every house, apartment, street or park, is at the center of someone’s whole life. When you really think about this and stop relegating these things to mere scenery, the world feels anything but small. 

It feels even larger when you fold in time as well. Consider not just the significance to people alive today, but the countless lives going back tens of thousands of years. We hear so much about how all of human history is the blink of an eye in geologic or cosmic time, but at the human scale, our history is almost unimaginably deep. We’ve been here long enough for every single patch of the earth’s surface to be rich with human history. Most of it forgotten, but all of it real. 

Lately I’ve gotten much more interested in history, especially ancient history and prehistory for this reason. Just as it is eye opening to think of all the places you visit on vacation as someone’s home, it fires my imagination to consider people as real and complex as you and me living thousands or tens of thousands of years ago. Real people peering out over the wilderness of an uninhabited continent, or cautiously trading with tribes of Neanderthals, or waging a forgotten war on the ground we walk every day, or struggling with the timeless day to day tasks of raising a family. I feel the depth of history stretching out into the past, at once unreachable but intimate in our shared humanity. 

I came across this on my social media feeds after I had written this blog post.

Yes, we humans are insignificant on a cosmic scale, but so what? We don’t live on that scale, we live on a human scale. Nihilism is a cop-out. We are responsible for deciding what is significant and meaningful, and as anyone who has held a newborn can tell you, it has nothing to do with size or age. You can hold the most important thing in the universe in your arms.

For small creatures such as we, the vastness is only bearable through love.

Carl Sagan

Pale Blue Dot

Look again at that dot. That’s here. That’s home. That’s us. On it everyone you love, everyone you know, everyone you ever heard of, every human being who ever was, lived out their lives. The aggregate of our joy and suffering, thousands of confident religions, ideologies, and economic doctrines, every hunter and forager, every hero and coward, every creator and destroyer of civilization, every king and peasant, every young couple in love, every mother and father, hopeful child, inventor and explorer, every teacher of morals, every corrupt politician, every “superstar,” every “supreme leader,” every saint and sinner in the history of our species lived there–on a mote of dust suspended in a sunbeam.

The Earth is a very small stage in a vast cosmic arena. Think of the rivers of blood spilled by all those generals and emperors so that, in glory and triumph, they could become the momentary masters of a fraction of a dot. Think of the endless cruelties visited by the inhabitants of one corner of this pixel on the scarcely distinguishable inhabitants of some other corner, how frequent their misunderstandings, how eager they are to kill one another, how fervent their hatreds.

Our posturings, our imagined self-importance, the delusion that we have some privileged position in the Universe, are challenged by this point of pale light. Our planet is a lonely speck in the great enveloping cosmic dark. In our obscurity, in all this vastness, there is no hint that help will come from elsewhere to save us from ourselves.

The Earth is the only world known so far to harbor life. There is nowhere else, at least in the near future, to which our species could migrate. Visit, yes. Settle, not yet. Like it or not, for the moment the Earth is where we make our stand.

It has been said that astronomy is a humbling and character-building experience. There is perhaps no better demonstration of the folly of human conceits than this distant image of our tiny world. To me, it underscores our responsibility to deal more kindly with one another, and to preserve and cherish the pale blue dot, the only home we’ve ever known.

– Carl Sagan, Pale Blue Dot, 1994

Jupiter as the Moon

Have you seen this awesome set of pictures depicting what it would look like if you replaced our moon with each of the planets? I particularly like the images for Jupiter and Saturn – they absolutely dominate the night sky:


Jupiter, as it would look if it were our moon.

I always enjoy pictures like this: they are a great way to illustrate the relative sizes of the planets. But the following tweet made my skeptic senses tingle:


Now, Ezra Klein is a smart guy, and I have followed his blog for a while for his excellent political coverage, which is nice and wonkish, with lots of graphs and charts. I’m a scientist, I like me some graphs and charts. But as much as his blog loves to factcheck political stuff, he failed to fact check this fact check.

The tweet in question says that the Earth and Jupiter would collide if they were the same distance apart as the Earth and the Moon. it’s not that this is wrong, but that it doesn’t state its assumptions and so it is misleading. I was tempted to reply on Twitter, but this is the sort of thing that, alas, involves lots of caveats so I thought it would be better to tackle it here.

The main question is what the motion of the two planets is when you suddenly replace the moon with Jupiter. If both planets are stationary relative to their center of mass, then yeah, they’re going to collide. But the same would be true of the Earth and the Moon. If the two planets have any angular momentum at all, they will orbit their center of mass rather than simply falling toward each other. So that means that in all cases except that in which the planets start at rest, they won’t hit each other.

But not quite. Because planets have some size. If they don’t have enough angular momentum, they will follow a very narrow elliptical orbit and will crash into each other. To avoid collision, there has to be enough angular momentum for the periapsis of the orbit to be greater than half the sum of the planets’ radii. I tried switching Jupiter for the moon, but otherwise keeping the angular momentum and orbital eccentricity of the system the same and I found that the periapsis is about 4400 km (I did this calculation quickly – my numbers might be off so feel free to check me!). This is too small to keep Earth and Jupiter from colliding, so the tweet is correct, given the assumption that the angular momentum and eccentricity of the system stays the same when you swap the moon for Jupiter.

But what bothered me was that the tweet could be read to imply that an Earth-sized object and a Jupiter-sized object could never comfortably orbit each other, and that’s just not true. With enough angular momentum, an Earth-sized object could be in a stable orbit around Jupiter.

So, let’s say the system has enough angular momentum for the Earth to stay in a stable circular orbit at the specified distance. What other misfortune might befall us? One possibility is that we would be inside the Roche limit and the powerful tides from Jupiter would tear us apart. I calculate the rigid-body Roche limit for Jupiter and Earth to be ~108,900 km, which is safely less than the Earth-Moon distance.

That’s not to say the tides wouldn’t do some weird things of course. Jupiter’s tides would still be huge and so it would raise enormous tides in our oceans and in the solid rock of the Earth itself. The friction generated by these tides would heat up the Earth’s interior (and probably trigger volcanoes and earthquakes in the process) and gradually slow the Earth’s rotation until one side of the earth was permanently locked facing Jupiter (the same thing has already happened to the moon, which is why we don’t see the far side except from spacecraft).

We would also be pounded by the intense radiation of Jupiter’s magnetosphere. Our magnetic field might protect us for a while, but as our spin rate slowed, our magnetic field would die, leaving us exposed. It’s possible that the radiation would then strip away our atmosphere, leaving the earth a desiccated and dead world. I’ll leave that calculation as an exercise for the reader.  Correction: our orbital period around Jupiter would actually not be much more than a day, so our magnetic filed would probably survive.

So, bottom line: the tweet in question is only sort of right. Earth could stably orbit Jupiter, just not with the same orbital parameters as the current Earth-Moon system. If we were in a stable orbit, there would be some… interesting side effects, which might prove to be deadly, but nothing as dramatic as crashing into Jupiter.


How do Zerg Fly in Space? Part 1: Mutalisks

Ok folks, it’s time. We’ve all asked this question, but I’ve been putting off answering it because we all actually know the answer.

How do the Zerg fly in space?


There’s a certain point in sci-fi or fantasy where you have to just suspend disbelief and go along for the ride, and I think that the Zerg ability to travel through space is a good example of this. That said, I’d like to take a look at one of the most common explanations that people give to justify the mutalisk’s ability to flap its wings and propel itself through space. As you’ll see, it’s completely implausible.

Now, we know that flapping doesn’t do anything in a vacuum: there’s nothing to provide any resistance, so you can flap all you want and it won’t move you forward. But what if mutalisks used their dragon-like wings as solar sails, catching the photons from a nearby star to cruise through interplanetary space? That might not explain the flapping, but it could explain how they can move, so let’s take a closer look.

The idea behind solar sails is the conservation of momentum. Even though photons of sunlight have no mass, they do have momentum. High school physics tells us that momentum is conserved, so if you have a bunch of photons with momentum being absorbed by a solar sail (or a mutalisk’s leathery wing) then their momentum must be transferred to the thing they’re hitting, exerting a force on it and causing it to move through space. So, how large would a mutalisk’s wings have to be to let it accelerate at a reasonable speed? To figure this out, we need to do a back of the envelope calculation, making some assumptions about how big mutalisks are.

In general, the sizes of units in the game are not reliable: I prefer to consider the cinematics as the authoritative source. So let’s take a look at this cinematic showing Jim Raynor’s battlecruiser being attacked by a swarm of mutalisks.

At about six seconds, one of the mutalisks flies over the right-hand side of the battlecruiser and crosses near a long row of windows. Based on its size compared to the set of windows, I would say that the creatures have a wingspan of around 100 meters and that their tube-like body is about the same length and maybe 5 meters across. If mutalisks are like most earth life, then they are mostly water. to get a rough idea of their weight we can calculate their volume and then multiply by the density of water. A cylinder 5 meters by 100 meters has a volume of about 2000 cubic meters. That would correspond to a whopping 2,000,000 kg or 2000 metric tons!

Now, obviously that’s too big for something to fly in at atmosphere, let alone in space by flapping its wings. But lets be generous and say that maybe mutalisks are made of some very low-density material, and maybe I overestimated their size. What if they were closer to 20 tons? How much oomph would their wings give them if they used them as solar sails. Again I’ll be generous and treat the wings as a square of material 100 meters on a side.

The momentum of a photon is given by: Momentum = Energy/Speed of Light, so near a sun-like star, where most photons are in the visible range, they have an energy of 2-3 electron volts, yielding a momentum of 1.6×10^-27 kg m/s per photon. That’s not much, but a star puts out a lot of photons, so let’s see if that balances it out and gives us a decent thrust.

Let’s say our theoretical mutalisk is orbiting the sun at the same distance as Earth, 150,000,000,000 m from the sun. The sun puts out 3.8×10^26 watts or roughly 8×10^44 photons per second, but that power is spread out in all directions. To figure out how much hits our solar-sailing mutalisk, we have to imagine spreading that power out over a sphere the size of our mutalisk’s orbit with a surface area of 4*pi*R^2 where R is the radius of the orbit. That gives 2.25×10^20 photons per square meter per second.

Solar sails don't make for the most maneuverable spacecraft, and they would be sitting ducks in any sort of space battle.

With a wing area of 100 m x 100 m (10,000 square meters), our mutalisk would intercept around 10^24 photons per second, corresponding to a whopping force of 0.0004 newtons! That’s enough force to accelerate a 20 ton mutalisk up to about 14 miles per hour in a year.

Edit: An astute reader points out that the size of mutalisks is described in the Starcraft novels as being much smaller than I described. They apparently have a wingspan of 20 feet and are only 7 feet long and about a meter across. to me that seems shockingly small, especially compared to the cinematics, and it also seems quite stubby compared to all of the art depicting mutalisks as having a body that is a long tube. Still, we can scale the above results to fit these new dimensions. Given a cylinder 7 feet long and 3.3 feet across, and again assuming a density like water, I get a mass of 1.7 metric tons. If we treat the wings generously as a 20 foot square, then their surface area is 37 square meters, so the thrust on wings of that size as compared to our 10,000 square meter example above would be .0004 newtons x .0037 = 1.5×10^-6 newtons. That’s enough to accelerate our 1700 kg mutalisk all the way up to 0.06 miles per hour in a year! Even assuming a much lower density, it would only accelerate a 170 kg mutalisk up to 0.6 miles per hour in a year.

You might not have followed every step of that (admittedly very crude) calculation, but that final value should give you some idea of how ridiculous it is to say that a Mutalisk’s wings could work as solar sails. Even assuming very large wings and a small body, the acceleration that you get is miniscule. Plus, solar sails are really only good for accelerating away from the star, and Mutalisks are like fighter jets: they need to be able to dodge and weave in all directions very quickly.

Bottom line, I can’t explain how the mutalisks fly in space. Heck, I can’t explain how something that big flies in air! Solar sailing certainly doesn’t cut it, so we’re left where we began. It’s magic. This is a part of the Starcraft Universe that just doesn’t fit with the laws of physics in our own universe, and that’s fine. Mutalisks are still cool, and it’s not like I’m going to stop playing Starcraft because I don’t know how they can fly in space.

Stay tuned: next I’ll take a look at all the non-winged Zerg fliers!

What is a Supernova?

The splash screen for the 'Supernova' mission in Starcraft 2.

Everyone has heard of supernovae, but it seems like there is some unwritten rule that they must never be depicted correctly in popular sci-fi. Starcraft 2 is, sadly, no exception. I don’t think it’s too much of a spoiler to say that there is a mission in the campaign where you have to battle your enemies to gain control of a relic on a planet that is about to be consumed by the fires of a huge blue star that is “going nova”. Or supernova. The words are used interchangeably.

As an astronomer, I always cringe when this happens, so I want to clear up what exactly supernovae and novae are.

The confusion is understandable: both are stellar explosions, and their names imply that a supernova is just a big nova. But in most cases this isn’t true. Let’s consider supernovae first, since by understanding them we will already be well on our way to understanding novae.

A supernova is when a very large star explodes. But that’s the end of a long process, so let’s rewind to the beginning: a star starts off as a ball of (mostly) hydrogen gas that is compacted into a dense sphere by its own gravity. At some point, the immense pressure of all that hydrogen is enough to force the atoms in the star’s core to collide with one another and merge into helium, releasing a huge amount of energy. This process is called fusion, and for most of a star’s life, it sits there turning hydrogen into helium and producing lots of energy. That energy makes the star so hot that it glows, and it also provides the pressure that keeps gravity from crushing the star any more. Most stars are poised in perfect balance with gravity trying to compress them and the nuclear reactions in their cores trying to expand them. Continue reading

© 2021 Ryan Anderson

Theme by Anders NorenUp ↑